Most wireless networks are based on the IEEE® 802.11 standards. A basic wireless network consists of multiple stations communicating with radios that broadcast in either the 2.4GHz or 5GHz band, though this varies according to the locale and is also changing to enable communication in the 2.3GHz and 4.9GHz ranges.
802.11 networks are organized in two ways. In infrastructure mode, one station acts as a master with all the other stations associating to it, the network is known as a BSS, and the master station is termed an access point (AP). In a BSS, all communication passes through the AP; even when one station wants to communicate with another wireless station, messages must go through the AP. In the second form of network, there is no master and stations communicate directly. This form of network is termed an IBSS and is commonly known as an ad-hoc network.
802.11 networks were first deployed in the 2.4GHz band using protocols defined by the IEEE® 802.11 and 802.11b standard. These specifications include the operating frequencies and the MAC layer characteristics, including framing and transmission rates, as communication can occur at various rates. Later, the 802.11a standard defined operation in the 5GHz band, including different signaling mechanisms and higher transmission rates. Still later, the 802.11g standard defined the use of 802.11a signaling and transmission mechanisms in the 2.4GHz band in such a way as to be backwards compatible with 802.11b networks.
Separate from the underlying transmission techniques, 802.11 networks have a variety of security mechanisms. The original 802.11 specifications defined a simple security protocol called WEP. This protocol uses a fixed pre-shared key and the RC4 cryptographic cipher to encode data transmitted on a network. Stations must all agree on the fixed key in order to communicate. This scheme was shown to be easily broken and is now rarely used except to discourage transient users from joining networks. Current security practice is given by the IEEE® 802.11i specification that defines new cryptographic ciphers and an additional protocol to authenticate stations to an access point and exchange keys for data communication. Cryptographic keys are periodically refreshed and there are mechanisms for detecting and countering intrusion attempts. Another security protocol specification commonly used in wireless networks is termed WPA, which was a precursor to 802.11i. WPA specifies a subset of the requirements found in 802.11i and is designed for implementation on legacy hardware. Specifically, WPA requires only the TKIP cipher that is derived from the original WEP cipher. 802.11i permits use of TKIP but also requires support for a stronger cipher, AES-CCM, for encrypting data. The AES cipher was not required in WPA because it was deemed too computationally costly to be implemented on legacy hardware.
The other standard to be aware of is 802.11e. It defines protocols for deploying multimedia applications, such as streaming video and voice over IP (VoIP), in an 802.11 network. Like 802.11i, 802.11e also has a precursor specification termed WME (later renamed WMM) that has been defined by an industry group as a subset of 802.11e that can be deployed now to enable multimedia applications while waiting for the final ratification of 802.11e. The most important thing to know about 802.11e and WME/WMM is that it enables prioritized traffic over a wireless network through Quality of Service (QoS) protocols and enhanced media access protocols. Proper implementation of these protocols enables high speed bursting of data and prioritized traffic flow.
FreeBSD supports networks that operate using 802.11a, 802.11b, and 802.11g. The WPA and 802.11i security protocols are likewise supported (in conjunction with any of 11a, 11b, and 11g) and QoS and traffic prioritization required by the WME/WMM protocols are supported for a limited set of wireless devices.
No comments:
Post a Comment